Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors

Autor: S, Tessler, P, Rockwell, D, Hicklin, T, Cohen, B Z, Levi, L, Witte, I R, Lemischka, G, Neufeld
Rok vydání: 1994
Předmět:
Zdroj: The Journal of biological chemistry. 269(17)
ISSN: 0021-9258
Popis: The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for vascular endothelial cells and a potent angiogenic factor. Expression of a chimeric receptor containing the extracellular domain of the flk-1 receptor fused to the transmembrane and intracellular domains of the human c-fms receptor in NIH-3T3 cells, resulted in the appearance of high affinity binding sites for 125I-VEGF165 on transfected cells. The binding of 125I-VEGF165 to the flk-1/fms chimeric receptor of the transfected cells as well as the VEGF165-induced autophosphorylation of the chimeric receptors were inhibited in the presence of low concentrations of heparin (1-10 micrograms/ml). In contrast, similar concentrations of heparin potentiated the binding of 125I-VEGF165 to the endogenous VEGF receptors of the transfected cells, indicating that to some extent, the effect of heparin on 125I-VEGF165 binding is receptor type-dependent. A soluble fusion protein containing the extracellular domain of flk-1 fused to alkaline phosphatase (flk-1/SEAP) was used to study the effects of heparin on the binding of 125I-VEGF165 to flk-1 in a cell-free environment. The fusion protein specifically inhibited VEGF165-induced proliferation of vascular endothelial cells, but bound 125I-VEGF165 inefficiently in the absence of heparin. Addition of low concentrations of heparin or heparan sulfate (0.1-1 microgram/ml) resulted in a strong potentiation of 125I-VEGF165 binding, whereas higher heparin or heparan sulfate concentrations inhibited the binding. The effect of heparin on the binding of 125I-VEGF165 to flk-1/SEAP could not be mimicked by desulfated heparin or by chondroitin sulfate. Both bFGF and aFGF inhibited the binding when low concentrations of heparin were added to the binding reaction. However, higher concentrations of heparin abolished the inhibition, indicating that the inhibition is probably caused by competition for available heparin. Taken as a whole, these results indicate that heparin-like molecules regulate the binding of VEGF165 to its receptors in complex ways which depend on the heparin binding properties of VEGF165, on the specific VEGF receptor type involved, and on the amount and composition of heparin-like molecules that are present on the cell surface of VEGF receptor containing cells.
Databáze: OpenAIRE