Popis: |
The aim of this study was to evaluate the effects of various finishing and polishing systems on the final surface roughness of a resin composite. Hypotheses tested were: (1) reduced-step polishing systems are as effective as multiple-step systems on reducing the surface roughness of a resin composite and (2) the number of application steps in an F/P system has no effect on reducing surface roughness.Ninety discs of a nano-hybrid resin composite were fabricated and divided into nine groups (n = 10). Except the control, all of the specimens were roughened prior to be polished by: Enamel Plus Shiny, Venus Supra, One-gloss, Sof-Lex Wheels, Super-Snap, Enhance/PoGo, Clearfil Twist Dia, and rubber cups. The surface roughness was measured and the surfaces were examined under scanning electron microscope. Results were analyzed with analysis of variance and Holm-Sidak's multiple comparisons test (p 0.05).Significant differences were found among the surface roughness of all groups (p 0.05). The smoothest surfaces were obtained under Mylar strips and the results were not different than Super-Snap, Enhance/PoGo, and Sof-Lex Spiral Wheels. The group that showed the roughest surface was the rubber cup group and these results were similar to those of the One-gloss, Enamel Plus Shiny, and Venus Supra groups.(1) The number of application steps has no effect on the performance of F/P systems. (2) Reduced-step polishers used after a finisher can be preferable to multiple-step systems when used on nanohybrid resin composites. (3) The effect of F/P systems on surface roughness seems to be material-dependent rather than instrument- or system-dependent.Reduced-step systems used after a prepolisher can be an acceptable alternative to multiple-step systems on enhancing the surface smoothness of a nanohybrid composite; however, their effectiveness depends on the materials' properties. (J Esthet Restor Dent 29:31-40, 2017). |