Popis: |
Regulation of the pointed, or slow-growing, end of actin filaments is essential to the regulation of filament length. The purpose of this study is to investigate the role of skeletal muscle tropomyosin (TM) in regulating pointed end assembly and disassembly in vitro. The effects of TM upon assembly and disassembly of actin monomers from the pointed filament end were measured using pyrenyl-actin fluorescence assays in which the barbed ends were capped by villin. Tropomyosin did not affect pointed end elongation; however, filament disassembly from the pointed end stopped in the presence of TM under conditions where control filaments disassembled within minutes. The degree of protection against depolymerization was dependent upon free TM concentration and upon filament length. When filaments were diluted to a subcritical actin concentration in TM, up to 95% of the filamentous actin remained after 24 h and did not depolymerize further. Longer actin filaments (150 monomers average length) were more effectively protected from depolymerization than short filaments (50 monomers average length). Although filaments stopped depolymerizing in the presence of TM, they were not capped as shown by elongation assays. This study demonstrates that a protein, such as TM, which binds to the side of the actin filament can prevent dissociation of monomers from the end without capping the end to elongation. In skeletal muscle, tropomyosin could prevent thin filament disassembly from the pointed end and constitute a mechanism for regulating filament length. |