Destabilization mechanism of (W

Autor: Haimei, Jin, Lingling, Ge, Xia, Li, Rong, Guo
Rok vydání: 2020
Zdroj: Journal of colloid and interface science. 585
ISSN: 1095-7103
Popis: Reverse Janus emulsion, with droplets composed by "two rooms" of water phases, is a novel multiple emulsion attributed to excellent integration capability and biocompatibility. However, significant instability compared with normal Janus emulsions renders the stability issue of great importance. Moreover, the ultra-low aqueous-aqueous inner interfacial tension, the anisotropic nature of the droplets with distinct lobe composition, and the random orientation in the continuous phase endow the complicated and various demulsification mechanisms.Reverse Janus emulsion of (WCoalescence and sedimentation are found to be two main demulsification processes. Two salt "body" lobes of the "snowman" shaped Janus droplets combine first resulting in an intermediate Cerberus topology with two alcohol "heads" on one salt "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. Ultimately, the Gibbs free energy leads to a final state with three separated liquids. In addition, the variation in lobe viscosity, density, and properties of interfacial film greatly affect the demulsification rate and fusion pattern. A critical alcohol/surfactant mass ratio of 2 is found, beyond which a completely different fusion pattern occurs. Two alcohol "body" lobes combine first resulting in an intermediate Cerberus topology with two salt "heads" on one alcohol "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. The findings are instructive in the stability of aqueous based multiple emulsions with advanced morphologies and meanwhile, promote the future application of this novel emulsion in food science, pharmacy, and biomimetic compartmentalization.
Databáze: OpenAIRE