Comparison of iterated single-step and Bayesian regressions on genomic evaluations for age at 100 kg in swine

Autor: M S, Freitas, L S, Freitas, T, Weber, M, Yamaki, M E, Cantão, J O, Peixoto, M C, Ledur
Rok vydání: 2015
Předmět:
Zdroj: Journal of animal science. 93(10)
ISSN: 1525-3163
Popis: The effects of modified single-step genomic best linear unbiased prediction (ssGBLUP) iterations on GEBV and SNP were investigated using 85,388 age at 100 kg phenotypes from the BRF SA breeding program Landrace pure line animals, off-tested between 2002 and 2013. Pedigree data comprised animals born between 1999 and 2013. A total of 1,068 animals were assigned to the training population, in which all of them had genotypes, original and corrected age at 100 kg phenotypes, and weighted deregressed proof records. A total of 100 genotyped animals, with high accuracy age at 100 kg estimated breeding values, were assigned to the validation population. After applying the quality control workflow, a set of 41,042 SNP was used for the analysis. Standard and modified ssGBLUP, BayesCπ, and Bayesian Lasso were compared, and their predictive abilities were accessed by approximate true and GEBV correlations. Modified ssGBLUP iteration effects on SNP estimates and GEBV were relevant, in which assigned differential weights and shrinkage caused important losses on ssGBLUP predictive ability for age at 100 kg GEBV. Even though ssGBLUP accuracy can be equal or better than the compared Bayesian methods, additional gains can be obtained by correctly identifying the number of iterations required for best ssGBLUP performance.
Databáze: OpenAIRE