Addition of tetrodotoxin alters the morphology of thalamocortical axons in organotypic cocultures

Autor: M F, Wilkemeyer, K J, Angelides
Rok vydání: 1996
Předmět:
Zdroj: Journal of neuroscience research. 43(6)
ISSN: 0360-4012
Popis: Living organotypic cocultures of rat thalamic and cortical explants were used to examine the effects of blocking action potential activity on the morphological development of axons in the mammalian neocortex. Studies in vivo have suggested that blocking sodium channel-dependent activity influences the growth characteristics of thalamocortical axons during development. We have extended these observations by using an in vitro system that affords more direct observational analysis of the early events of axonal growth in an accessible cellular environment DiI-labeled thalamocortical axons grow exuberantly into the target cortex and establish axonal connections that reflect the events of early thalamocortical afferent development. Within these cocultures, the morphological features of DiI-labeled axons can be readily distinguished. Tracings of thalamocortical axons were quantitated with respect to number, length, and termination pattern of axonal branches, as well as number of varicosities. Addition of the voltage-dependent sodium channel blocker, tetrodotoxin, to cocultures did not change the general pattern of thalamocortical axonal ingrowth or the average length of collateral branches of these axons. However, in the presence of tetrodotoxin, axons were more highly branched, with an increased number of varicosities as compared to untreated cocultures. This pattern of axonal growth and branching may reflect the activity-dependent fine-tuning and trimming of collaterals that occur as thalamic afferents begin to refine their cortical territory. Our observations in thalamocortical cocultures are consistent with the view that neuronal activity modulates the pattern of axonal growth and development.
Databáze: OpenAIRE