Nodeless superconducting phase arising from a strong (π, π) antiferromagnetic phase in the infinite-layer electron-doped Sr(1-x)La(x)CuO2 compound

Autor: John W, Harter, Luigi, Maritato, Daniel E, Shai, Eric J, Monkman, Yuefeng, Nie, Darrell G, Schlom, Kyle M, Shen
Rok vydání: 2012
Zdroj: Physical review letters. 109(26)
ISSN: 1079-7114
Popis: The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re(2-x)Ce(x)CuO4 and A(1-x)La(x)CuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially stabilized Sr(1-x)La(x)CuO2 thin films synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (π, π) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (π/2, π/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.
Databáze: OpenAIRE