Popis: |
Crop protection is mainly achieved by applying Plant Protection Products (PPP) using hydraulic nozzles, which rely on pressure, to produce a wide droplet size distribution. Because of always increased concerns about drift reduction, a wider range of low drift nozzles, such as air induction nozzles, was adopted in order to reduce the finest part of the spray. While successful for some treatments, the efficiency of coarser sprays is dramatically reduced on small and superhydrophobic target, i.e. at early stage weed control. This may be related to the increased proportion of big bouncing and splashing droplets. On the other hand, Controlled Droplet Application (CDA), using shielded rotary atomizers, stands for an improved control of droplets diameters and trajectories compared to hydraulic nozzles. Unfortunately, these atomizers, because of their horizontal droplet release, are widely recognized to produce more drift than hydraulic nozzles. The present contribution investigates whether the setting of a rotary atomizer 60 degrees forward tilted can reduce drift to acceptable levels in comparison with vertical and 60 degrees forward tilted standard and low drift flat fan nozzles for the same flow rate. In a wind tunnel, the drift potential of a medium spray produced by a tilted shielded rotary atomizer Micromax 120 was benchmarked with that of a flat fan nozzle XR11002 fine spray and that of an anti-drift nozzle Hardi Injet 015 medium spray. Operating parameters were set to apply 0.56 l/min for every spray generator. Vertical drift profiles were measured 2.0 m downward from nozzle axis for a 2 m.s(-1) wind speed. The tilted hydraulic nozzles resulted in a significant drift increase while droplets trajectories are affected by the decrease of the droplet initial vertical speed. Droplets emitted by the shielded rotary atomizer drift due to low entrained air and turbulence. A significant reduction of the cumulative drift was achieved by the rotary atomizer in comparison with flat fan nozzle while still being higher than the anti-drift nozzle. Unfortunately, the drift potential index (DIX) revealed that the cumulative drift reduction may not results in actual drift decrease because of higher drift at higher sampling locations. As a result, the DIX of the shielded rotary atomizer was similar to the standard flat-fan nozzle while the anti-drift nozzle reduced drastically drift as intended. Therefore, the 60 degrees tilted rotary atomizer failed to reach low drift levels as expected despite the reduced span. |