Autor: |
M, Jansson, Y C, Li, L, Jendeberg, S, Anderson, G T, Montelione, B, Nilsson |
Rok vydání: |
1996 |
Předmět: |
|
Zdroj: |
Journal of biomolecular NMR. 7(2) |
ISSN: |
0925-2738 |
Popis: |
An approach to produce 13C- and 15N-enriched proteins is described. The concept is based on intracellular production of the recombinant proteins in Escherichia coli as fusions to an IgG-binding domain, Z, derived from staphylococcal protein A. The production method provides yields of 40-200 mg/l of isotope-enriched fusion proteins in defined minimal media. In addition, the Z fusion partner facilitates the first purification step by IgG affinity chromatography. The production system is applied to isotope enrichment of human insulin-like growth factor II (IGF-II), bovine pancreatic trypsin inhibitor (BPTI), and Z itself. High levels of protein production are achieved in shaker flasks using totally defined minimal medium supplemented with 13C(6)-glucose and (15NH4)2SO4 as the only carbon and nitrogen sources. Growth conditions were optimized to obtain high protein production levels and high levels of isotope incorporation, while minimizing 13C(6)-glucose usage. Incorporation levels of 13C and/or 15N isotopes in purifies IGF-II, BPTI, and Z were confirmed using mass spectrometry and NMR spectroscopy. More than 99% of total isotope enrichment was obtained using a defined isotope-enriched minimal medium. The optimized systems provide reliable, high-level production of isotope-enriched fusion proteins. They can be used to produce 20-40 mg/l of properly folded Z and BPTI proteins. The production system of recombinant BPTI is state-of-the-art and provides the highest known yield of native refolded BPTI. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|