Autor: |
Rishikesan, Kamaleswaran, Jiaoying, Lian, Dong-Lien, Lin, Himasagar, Molakapuri, SriManikanth, Nunna, Parth, Shah, Shiv, Dua, Rema, Padman |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
AMIA Annu Symp Proc |
ISSN: |
1942-597X |
Popis: |
The efficacy of early fluid treatment in patients with sepsis is unclear and may contribute to serious adverse events due to fluid non-responsiveness. The current method of deciding if patients are responsive to fluid administration is often subjective and requires manual intervention. This study utilizes MIMIC III and associated matched waveform datasets across the entire ICU stay duration of each patient to develop prediction models for assessing fluid responsiveness in sepsis patients. We developed a pipeline to extract high frequency continuous waveform data and included waveform features in the prediction models. Comparing across five machine learning models, random forest performed the best when no waveform information is added (AUC = 0.84), with mean arterial blood pressure and age identified as key factors. After incorporation of features from physiologic waveforms, logistic regression with L1 penalty provided consistent performance and high interpretability, achieving an accuracy of 0.89 and F1 score of 0.90. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|