Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01105e Click here for additional data file

Autor: Johansson, J. O., Kim, J.-W., Allwright, E., Rogers, D. M., Robertson, N., Bigot, J.-Y.
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Chemical Science
ISSN: 2041-6539
2041-6520
Popis: Femtosecond magneto-optical measurements detect the formation of a spin-excited state in the vanadium–chromium Prussian blue analogue, which is a molecule-based magnet.
We show that a vanadium–chromium Prussian blue analogue, which is a room-temperature molecule-based magnet, displays a fast magnetic response on a femtosecond timescale that is attributed to the super-exchange interaction between the metal ions. These dynamics are obtained from femtosecond Faraday magneto-optical (MO) measurements, performed at 50 and 300 K. Exciting at the ligand-to-metal charge-transfer (LMCT) band results in the formation of the 2E excited state on the Cr ion via intersystem crossing (ISC) from the 4LMCT state in less than 250 fs. Subsequent vibrational relaxation in the 2E state occurs on a 0.78 ± 0.05 ps timescale at 50 K and 1.1 ± 0.1 ps at 300 K. The MO measurements can detect the formation of the 2E state on the Cr ion from the change in the super-exchange interaction taking place as a result of the corresponding spin flip associated with the formation of the 2E state. These results open up a new avenue to study molecular magnets using a powerful method that is capable of directly probing spin dynamics on a sub-picosecond timescale in thin film environments.
Databáze: OpenAIRE