Autor: |
S F, Malin, T L, Ruchti, T B, Blank, S N, Thennadil, S L, Monfre |
Rok vydání: |
1999 |
Předmět: |
|
Zdroj: |
Clinical chemistry. 45(9) |
ISSN: |
0009-9147 |
Popis: |
Self-monitoring of blood glucose by diabetics is crucial in the reduction of complications related to diabetes. Current monitoring techniques are invasive and painful, and discourage regular use. The aim of this study was to demonstrate the use of near-infrared (NIR) diffuse reflectance over the 1050-2450 nm wavelength range for noninvasive monitoring of blood glucose.Two approaches were used to develop calibration models for predicting the concentration of blood glucose. In the first approach, seven diabetic subjects were studied over a 35-day period with random collection of NIR spectra. Corresponding blood samples were collected for analyte analysis during the collection of each NIR spectrum. The second approach involved three nondiabetic subjects and the use of oral glucose tolerance tests (OGTTs) over multiple days to cause fluctuations in blood glucose concentrations. Twenty NIR spectra were collected over the 3.5-h test, with 16 corresponding blood specimens taken for analyte analysis.Statistically valid calibration models were developed on three of the seven diabetic subjects. The mean standard error of prediction through cross-validation was 1.41 mmol/L (25 mg/dL). The results from the OGTT testing of three nondiabetic subjects yielded a mean standard error of calibration of 1.1 mmol/L (20 mg/dL). Validation of the calibration model with an independent test set produced a mean standard error of prediction equivalent to 1.03 mmol/L (19 mg/dL).These data provide preliminary evidence and allow cautious optimism that NIR diffuse reflectance spectroscopy using the 1050-2450 nm wavelength range can be used to predict blood glucose concentrations noninvasively. Substantial research is still required to validate whether this technology is a viable tool for long-term home diagnostic use by diabetics. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|