Autor: |
S Jamaleddin, Mousavi, Solmaz, Farzaneh, Stéphane, Avril |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
International journal for numerical methods in biomedical engineering. 34(4) |
ISSN: |
2040-7947 |
Popis: |
Dissections of ascending thoracic aortic aneurysms (ATAAs) cause significant morbidity and mortality worldwide. They occur when a tear in the intima-media of the aorta permits the penetration of the blood and the subsequent delamination and separation of the wall in 2 layers, forming a false channel. To predict computationally the risk of tear formation, stress analyses should be performed layer-specifically and they should consider internal or residual stresses that exist in the tissue. In the present paper, we propose a novel layer-specific damage model based on the constrained mixture theory, which intrinsically takes into account these internal stresses and can predict appropriately the tear formation. The model is implemented in finite-element commercial software Abaqus coupled with user material subroutine. Its capability is tested by applying it to the simulation of different exemplary situations, going from in vitro bulge inflation experiments on aortic samples to in vivo overpressurizing of patient-specific ATAAs. The simulations reveal that damage correctly starts from the intimal layer (luminal side) and propagates across the media as a tear but never hits the adventitia. This scenario is typically the first stage of development of an acute dissection, which is predicted for pressures of about 2.5 times the diastolic pressure by the model after calibrating the parameters against experimental data performed on collected ATAA samples. Further validations on a larger cohort of patients should hopefully confirm the potential of the model in predicting patient-specific damage evolution and possible risk of dissection during aneurysm growth for clinical applications. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|