Autor: |
G B, Koudelka, F B, Hansen, M J, Ettinger |
Rok vydání: |
1985 |
Předmět: |
|
Zdroj: |
The Journal of biological chemistry. 260(29) |
ISSN: |
0021-9258 |
Popis: |
Solvent isotope effects and the pH dependence of laccase catalysis under steady-state conditions were examined with a rapid reductant to assess the potential roles of protein protic groups and the catalytic mechanism. The pH dependence of both reductant-dependent and reductant-independent steps showed bell-shaped profiles implicating at least two protic groups in each case. The apparent pKa values were: for the reductant-independent step(s), pK alpha 1 = 8.98 +/- 0.02 and pK alpha 2 = 5.91 +/- 0.03; for the reductant-dependent step(s), pK' alpha 1 = 7.55 +/- 0.12, pK' alpha 2 = 8.40 +/- 0.23. No solvent isotope effect on reductant-dependent steps was detected other than a standard shift effect. However, a significant solvent isotope effect on a reductant-independent step(s) was observed; kH/kD = 2.12 at the pH optimum of 7.5. The concentration dependence of the D2O effect indicated that a single proton was involved. Simulations of the p(H,D) data suggested that the solvent isotope effect was associated with the protein protic group required in its undissociated form (pK alpha 2). The pH effects on reductant-dependent steps are apparently associated with reductant-dependent steps that occur between O2 binding and water formation in the catalytic reaction sequence. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|