Popis: |
The consequences of electromagnetic exposure on human health are receiving increasing scientific attention and have become the subject of a vigorous public debate. In the present study we evaluated the effects of magnetic field on pineal function in man and rat. Two groups of Wistar male rats were exposed to 50-Hz magnetic fields of either 1, 10 or 100 microT. The first group was exposed for 12 hours and the second for 30 days (18 hours per day). Short-term exposure depressed both pineal NAT activity and nocturnal serum melatonin concentration but only with the highest intensity used (100 microT). Long-term exposure to a magnetic field significantly depressed the nighttime peak of serum melatonin concentration and pineal NAT activity with 10 and 100 microT. Our results show that sinusoidal magnetic fields altered the production of melatonin through an inhibition of pineal NAT activity. Both duration and intensity of exposure played an important role in this effect. In the second step of this study, thirty-two young men (20-30 years old) were divided into two groups (control group, i.e., sham-exposed: 16 subjects; exposed group: 16 subjects). The subjects were exposed to the magnetic field from 23 h to 08 h (i.e. for 9 h) while lying down. In one experiment the exposure was continuous, in the second one, the magnetic field was intermittent. No significant differences were observed between sham-exposed (control) and exposed men for serum melatonin and 6-sulfatoxymelatonin. In our last and more recent study, we looked for the circadian rhythm of melatonin in 15 men exposed chronically and daily for a period of 1-20 years, in the workplace and at home, to a 50 Hz (exposure 0.1 to0.3 microT) magnetic field. The results are compared to those for 15 unexposed men who served as controls. Blood samples were taken hourly from 2000 to 0800. Nighttime urine was also collected and analyzed. This work shows that subjects exposed over a long period (up to 20 years) and on a daily basis to magnetic fields experienced no changes in their plasma melatonin level, their urinary 6-sulfatoxymelatonin level, or the circadian rhythm of melatonin. It thus clearly rebuts the "melatonin hypothesis" that a decrease in plasma melatonin concentration--or a disruption in its secretion--explains the occurrence of, clinical disorders or cancers possibly related to magnetic fields. |