Retinoic acid induces secretion of latent transforming growth factor beta 1 and beta 2 in normal and human papillomavirus type 16-immortalized human keratinocytes

Autor: A, Batova, D, Danielpour, L, Pirisi, K E, Creek
Rok vydání: 1992
Předmět:
Zdroj: Cell growthdifferentiation : the molecular biology journal of the American Association for Cancer Research. 3(11)
ISSN: 1044-9523
Popis: Similar cellular responses are elicited by retinoic acid (RA) and transforming growth factor beta (TGF-beta). We investigated the ability of RA to modulate the production of TGF-beta in normal human keratinocytes (HKc) and HKc lines immortalized by transfection with human papillomavirus type 16 DNA (HKc/HPV16). RA treatment of both normal HKc and HKc/HPV16 resulted in a 2-3-fold induction in secreted levels of latent TGF-beta. The induction in TGF-beta secretion by RA was dose dependent, with significant increases observed with RA concentrations as low as 1-10 nM, and time dependent, with maximal induction occurring about 3 days after initiation of RA exposure. In addition, RA induced intracellular levels of TGF-beta almost 5-fold. Sandwich enzyme-linked immunosorbent assays were used to specifically quantify TGF-beta 1 and TGF-beta 2 secreted by normal HKc and HKc/HPV16 cultured in the absence or presence of RA. RA increased the secreted levels of latent TGF-beta 1 and TGF-beta 2 an average of 2- and 5-fold, respectively, with no major differences in the fold induction between normal HKc and HKc/HPV16. Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced specific transcripts for TGF-beta 1 and TGF-beta 2 about 3- and 50-fold, respectively. RA treatment of HKc had no significant effect on the binding affinity of TGF-beta for its receptors or receptor number. Normal HKc and HKc/HPV16 displayed similar dose-dependent inhibition of proliferation by TGF-beta 1. These studies indicate that RA may regulate growth control in both normal HKc and HKc/HPV16 by enhancing TGF-beta 1 and TGF-beta 2 production, which, after activation at the cell surface, could inhibit cellular proliferation in an autocrine and/or paracrine manner.
Databáze: OpenAIRE