Kabuki Syndrome: Identification of Two Novel Variants in KMT2D and KDM6A

Autor: Khodaeian, Mehrnoosh, Jafarinia, Ehsan, Bitarafan, Fatemeh, Shafeii, Shohreh, Almadani, Navid, Daneshmand, Mohammad Ali, Garshasbi, Masoud
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mol Syndromol
Popis: Kabuki syndrome (KS) is a rare genetic disorder characterized by the following 5 crucial symptoms: dysmorphic facial features, growth retardation, skeletal abnormalities, intellectual disability, and dermatoglyphic malformations. Studies show that most of the KS cases are caused by mutations or large deletions in the KMT2D gene, while the other cases show mutations in KDM6A. We studied 2 patients with suspected KS in 2 unrelated families by whole-exome sequencing to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants and check the segregation in other members of the families. Finally, the potential effects of the variants on the structure and function of respective proteins were tested using in silico predictions. Both affected members of the families showed typical manifestations of KS including intellectual disability, developmental delay, and abnormal facial characteristics. A novel heterozygous frameshift variant in the KMT2D gene, c.4981del; p.(Glu1661Serfs*61), and a novel hemizygote missense variant in the KDM6A gene, c.3301G>A; p.(Glu1101Lys), were detected in patients 1 and 2, respectively. The frameshift variant identified in the first family was de novo, while in the second family, the mother was also heterozygous for the missense variant. The frameshift variant in KMT2D is predicted to lead to a truncated protein which is functionally impaired. The Glu1101 residue of KDM6A (UTX) affected in the second patient is located in a conserved region on the surface of the Jumonji domain and predicted to be causative. Our findings provide evidence on the possible pathogenicity of these 2 variants; however, additional functional studies are necessary to confirm their impacts.
Databáze: OpenAIRE