[Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.]

Autor: Ming Ze, Li, Yuan Ke, Gao, Xue Ying, Di, Wen Yi, Fan
Rok vydání: 2018
Předmět:
Zdroj: Ying yong sheng tai xue bao = The journal of applied ecology. 27(3)
ISSN: 1001-9332
Popis: The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.森林地表土壤含水率是森林生态系统中的重要参数,使用微波遥感技术快速准确地估算区域尺度上的森林地表土壤含水率,对于森林生态系统研究具有重要的现实意义.本文利用TDR-300土壤含水率速测仪测得黑龙江大兴安岭地区塔河林业局盘古林场内120块样地的森林地表土壤含水率作为因变量,利用C波段全极化SAR数据的极化分解参数作为自变量,构造多元线性回归统计模型和BP神经网络模型,定量估测森林地表土壤含水率,通过模型反演获得区域尺度上森林地表土壤含水率的空间分布.结果表明: 多元线性回归统计模型的精度为86.0%,均方差根误差(RMSE)为3.0%;BP神经网络模型的精度为89.4%,RMSE为2.7%.说明利用BP神经网络模型定量估测森林地表土壤含水率优于多元线性回归模型,将全极化SAR数据通过BP神经网络模型进行仿真,最终得到研究区域的森林地表土壤含水率空间分布图.
Databáze: OpenAIRE