Monitoring NAD(P)H by an ultrasensitive fluorescent probe to reveal reductive stress induced by natural antioxidants in HepG2 cells under hypoxia† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02020a

Autor: Pan, Xiaohong, Zhao, Yuehui, Cheng, Tingting, Zheng, Aishan, Ge, Anbin, Zang, Lixin, Xu, Kehua, Tang, Bo
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Chemical Science
ISSN: 2041-6539
2041-6520
Popis: An ultrasensitive fluorescent probe for monitoring NAD(P)H and revealing reductive stress induced by natural antioxidants in HepG2 cells under hypoxia.
Reductive stress, the opposite of oxidative stress, represents a disorder in the redox balance state which is harmful to biological systems. For decades, the role of oxidative stress in tumor therapy has been the focus of attention, while the effects of reductive stress have been rarely studied. Here, we report the anti-cancer effects of reductive stress induced by three natural antioxidants (resveratrol, curcumin and celastrol). Considering the fact that the solid tumor microenvironment suffers from hypoxia, we performed cell experiments under hypoxic conditions. In order to observe the reductive stress, we first developed an ultrasensitive fluorescent probe (TCF-MQ) for specifically imaging NAD(P)H which is a marker of reductive stress. TCF-MQ responded to NAD(P)H rapidly and exhibited high sensitivity with a detection limit of 6 nM. With the help of TCF-MQ, we found that upon the treatment of HepG2 cells with pharmacological doses of three natural antioxidants under hypoxic conditions, high levels of NAD(P)H were produced before cell death. The excess NAD(P)H resulted in reductive stress instead of oxidative stress. In contrast, under normoxic conditions, there was no reductive stress involved in the process of cell death induced by three natural antioxidants. Therefore, we hypothesize that the mechanism of cancer cell death induced by natural antioxidants under hypoxia should be attributed to the reductive stress.
Databáze: OpenAIRE