Autor: |
D R, Lesser, A, Grajkowski, M R, Kurpiewski, M, Koziolkiewicz, W J, Stec, L, Jen-Jacobson |
Rok vydání: |
1992 |
Předmět: |
|
Zdroj: |
The Journal of biological chemistry. 267(34) |
ISSN: |
0021-9258 |
Popis: |
We have probed the contacts between EcoRI endonuclease and the central phosphate of its recognition site GAApTTC, using synthetic oligonucleotides containing single stereospecific Rp- or Sp-phosphorothioates (Ps). These substitutions produce subtle stereospecific effects on EcoRI endonuclease binding and cleavage. An Sp-Ps substitution in one strand of the DNA duplex improves binding free energy by -1.5 kcal/mol, whereas the Rp-Ps substitution has an unfavorable effect (+0.3 kcal/mol) on binding free energy. These effects derive principally from changes in the first order rate constants for dissociation of the enzyme-DNA complexes. The first order rate constants for strand scission are also affected, in that a strand containing Sp-Ps substitution is cleaved 2 to 3 times more rapidly than a strand containing a normal prochiral phosphate, whereas a strand containing Rp-Ps substitution is cleaved about 3 times slower than normal. As a result, single-strand substitutions produce pronounced asymmetry in the rates of cleavage of the two DNA strands, and this effect is exaggerated in an Rp,Sp-heteroduplex. Ethylation-interference footprinting indicates that none of the Ps substitutions cause any major change in contacts between endonuclease and DNA phosphates. When an Sp-Ps localizes P = O in the DNA major groove, a hydrogen-bonding interaction with the backbone amide-NH of Gly116 of the endonuclease is improved relative to that with a prochiral phosphate having intermediate P-O bond order and delocalized charge. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|