Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics

Autor: H, Zhong, K, Chiles, D, Feldser, E, Laughner, C, Hanrahan, M M, Georgescu, J W, Simons, G L, Semenza
Rok vydání: 2000
Předmět:
Male
Vascular Endothelial Growth Factor A
Morpholines
Enzyme-Linked Immunosorbent Assay
Endothelial Growth Factors
Protein Serine-Threonine Kinases
Culture Media
Serum-Free

Phosphatidylinositol 3-Kinases
Proto-Oncogene Proteins
Tumor Cells
Cultured

Humans
Enzyme Inhibitors
Immunophilins
Hypoxia
Phosphoinositide-3 Kinase Inhibitors
Lymphokines
Epidermal Growth Factor
Neovascularization
Pathologic

Vascular Endothelial Growth Factors
TOR Serine-Threonine Kinases
Tumor Suppressor Proteins
PTEN Phosphohydrolase
Nuclear Proteins
Prostatic Neoplasms
Hypoxia-Inducible Factor 1
alpha Subunit

Phosphoric Monoester Hydrolases
DNA-Binding Proteins
Phosphotransferases (Alcohol Group Acceptor)
Chromones
Tetradecanoylphorbol Acetate
Hypoxia-Inducible Factor 1
Carrier Proteins
Proto-Oncogene Proteins c-akt
Signal Transduction
Transcription Factors
Zdroj: Cancer research. 60(6)
ISSN: 0008-5472
Popis: Dysregulated signal transduction from receptor tyrosine kinases to phosphatidylinositol 3-kinase (PI3K), AKT (protein kinase B), and its effector FKBP-rapamycin-associated protein (FRAP) occurs via autocrine stimulation or inactivation of the tumor suppressor PTEN in many cancers. Here we demonstrate that in human prostate cancer cells, basal-, growth factor-, and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor HIF-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively. HIF-1-dependent gene transcription is blocked by dominant-negative AKT or PI3K and by wild-type PTEN, whereas transcription is stimulated by constitutively active AKT or dominant-negative PTEN. LY294002 and rapamycin also inhibit growth factor- and mitogen-induced secretion of vascular endothelial growth factor, the product of a known HIF-1 target gene, thus linking the PI3K/PTEN/AKT/FRAP pathway, HIF-1, and tumor angiogenesis. These data indicate that pharmacological agents that target PI3K, AKT, or FRAP in tumor cells inhibit HIF-1alpha expression and that such inhibition may contribute to therapeutic efficacy.
Databáze: OpenAIRE