Identification and characterization of the major histocompatibility complex class II DQB (MhcMath-DQB1) alleles in Tibetan macaques (Macaca thibetana)

Autor: Y-F, Yao, J-J, Zhao, Q-X, Dai, J-Y, Li, L, Zhou, Y-T, Wang, Q-Y, Ni, M-w, Zhang, H-L, Xu
Rok vydání: 2013
Předmět:
Zdroj: Tissue antigens. 82(2)
ISSN: 1399-0039
Popis: Tibetan macaque (Macaca thibetana), an endangered primate species endemic to China, have been used as experimental animal model for various human diseases. Major histocompatibility complex (MHC) genes play a crucial role in the susceptibility and/or resistance to many human diseases, but little is known about Tibetan macaques. To gain an insight into the MHC background and to facilitate the experimental use of Tibetan macaques, the second exon of Mhc-DQB1 gene was sequenced in a cohort of wild Tibetan macaques living in the Sichuan province of China. A total of 23 MhcMath-DQB1 alleles were identified for the first time, illustrating a marked allelic polymorphism at the DQB1 locus for these macaques. Most of the sequences (74%) observed in this study belong to DQB1*06 (9 alleles) and DQB1*18 (8 alleles) lineages, and the rest (26%) belong to DQB1*15 (3 alleles) and DQB1*17 (3 alleles) lineages. The most frequent alleles detected among these macaques were MhcMath-DQB1*15:02:02 (17.9%), followed by Math-DQB1*06:06, 17:03 and 18:01, which were detected in 9 (16.1%) of the monkeys, respectively. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the peptide-binding region, suggesting balancing selection for maintaining polymorphisms at the MHC class II DQB1 locus. Phylogenetic analyses confirms the trans-species model of evolution of the Mhc-DQB1 genes in non-human primates, and in particular, the extensive allele sharing is observed between Tibetan and other macaque species.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje