Effects of antagonistic bacteria B6 against the pathogens of apple replant disease on the biomass of Malus hupehensis Rehd seedlings and soil environment under replanting

Autor: Li Ying, Liu, Wen Long, Ding, Ya Jie, Cao, Hong Ji, You, Ke Xin, Liu, Zhong Tao, Sun, Zhi Quan, Mao
Rok vydání: 2018
Předmět:
Zdroj: Ying yong sheng tai xue bao = The journal of applied ecology. 29(12)
ISSN: 1001-9332
Popis: We isolated strains from the rhizosphere soil of apple trees with replanting disease and evaluated the biological control potential for the pathogens Fusarium proliferatum, F. moniliforme, F. oxysporum, and F. solani. The morphological, physiological and biochemical character, and 16S rDNA sequence of the strain with the highest inhibitory rate were analyzed. The effect of strain biofertilizer on the biomass of Malus hupehensis Rehd. seedlings and soil environment under replanting disease was evaluated in a pot experiment. The results showed that the strain B6 had the strongest antagonistic activity. The inhibitory rate of B6 for F. proliferatum, F. moniliforme, F. oxysporum, Fusarium solani reached 71.8%, 70.1%, 72.6% and 91.5%, respectively. The strain B6 was identified as Bacillus methylotrophicus according to the results of morphological, physiological and biochemical character and 16S rDNA sequence analysis. Compared with the control, the bacterial manure made from the strain B6 enhanced the biomass of Malus hupehensis Rehd. seedlings in replanting soil to different extent. The ground diameter, fresh and dry mass were significantly increased by 18.3%, 49.6% and 51.2%, respectively. The strain B6 dramatically increased the number of cultivable bacteria and actinomyces in replanting soil and reduced the abundance of fungus to 37.7%, which accelerated the conversion of fungal soil to bacterial soil. It also dramatically increased the activities of sucrase, phosphatase, ureaseandcatalase in soil by 37.3%, 24.0%, 42.9% and 49.4%, respectively. In conclusion, the B6 fertilizer could improve the structure of cultivable microbial communities in the continuous cropping soil of apple trees, increase the soil enzyme activity, and enhance the growth of Malus hupehensis seedlings.以苹果连作障碍病原真菌层出镰刀菌、串珠镰刀菌、尖孢镰刀菌和腐皮镰刀菌为靶标菌,通过平板对峙法对分离自苹果根际土壤的细菌进行反复筛选比较,对筛选出的拮抗效果最优的菌株进行形态学、生理生化特征和16S rDNA序列分析鉴定,并于盆栽条件下探讨其菌肥对平邑甜茶幼苗生长及连作土壤环境的影响.结果表明: 菌株B6对上述4种病原真菌的抑菌率最高,分别达到71.8%、70.1%、72.6%、91.5%.经鉴定,菌株B6为甲基营养型芽孢杆菌.盆栽试验表明,与连作处理(CK
Databáze: OpenAIRE