Meat Science and Muscle Biology Symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle

Autor: M, Du, Y, Huang, A K, Das, Q, Yang, M S, Duarte, M V, Dodson, M-J, Zhu
Rok vydání: 2012
Předmět:
Zdroj: Journal of animal science. 91(3)
ISSN: 1525-3163
Popis: Beef cattle are raised for their lean tissue, and excessive fat accumulation accounts for large amounts of waste. On the other hand, intramuscular fat or marbling is essential for the palatability of beef. In addition, tender beef is demanded by consumers, and connective tissue contributes to the background toughness of beef. Recent studies show that myocytes, adipocytes, and fibroblasts are all derived from a common pool of progenitor cells during embryonic development. It appears that during early embryogenesis, multipotent mesenchymal stem cells first diverge into either myogenic or adipogenic-fibrogenic lineages; myogenic progenitor cells further develop into muscle fibers and satellite cells whereas adipogenic-fibrogenic lineage cells develop into the stromal-vascular fraction of skeletal muscle where reside adipocytes, fibroblasts, and resident fibro-adipogenic progenitor cells (the counterpart of satellite cells). Strengthening myogenesis (i.e., formation of muscle cells) enhances lean growth, promoting intramuscular adipogenesis (i.e., formation of fat cells) increases marbling, and reducing intramuscular fibrogenesis (i.e., formation of fibroblasts and synthesis of connective tissue) improves overall tenderness of beef. Because the abundance of progenitor cells declines as animals age, it is more effective to manipulate progenitor cell differentiation at an early developmental stage. Nutritional, environmental, and genetic factors shape progenitor cell differentiation; however, up to now, our knowledge regarding mechanisms governing progenitor cell differentiation remains rudimentary. In summary, altering mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.
Databáze: OpenAIRE