Popis: |
Phycobilins are open-chain tetrapyrroles of plants and algae which act as the chromophores of phycobiliproteins where they function as light energy-harvesting pigments. Phytochromobilin, another open-chain tetrapyrrole, is the chromophore of phytochrome, which functions as a light-sensing pigment in plant development. These open-chain tetrapyrroles are biosynthetically derived from protohaem. Enzyme reactions that convert protohaem to biliverdin IX alpha, and biliverdin IX alpha to phycocyanobilin, have been detected and characterized in extracts of the unicellular rhodophyte Cyanidium caldarium. Algal haem oxygenase and algal biliverdin-IX alpha reductase are both soluble enzymes that use electrons derived from reduced ferredoxin. Biochemical intermediates in the conversion of biliverdin IX alpha to (3E)-phycocyanobilin were identified as 15, 16-dihydrobiliverdin IX alpha, (3Z)-phycoerythrobilin and (3Z)-phycocyanobilin. Separate enzymes catalyse the two two-electron reduction steps in the conversion of biliverdin IX alpha to (3Z)-phycoerythrobilin. Z-to-E isomerization of the phycobilin ethylidine group is catalysed by an enzyme that requires glutathione for activity. Protein-bound phycoerythrobilin can be chemically converted to phytochromobilin which can then be released from the protein by methanolysis. This procedure was used to produce phytochromobilin in quantities sufficient to allow its chemical characterization and use in phytochrome reconstitution experiments. The results indicate that (2R,3E)-phytochromobilin spontaneously condenses with recombinant oat apophytochrome to form photoreversible holoprotein that is spectrally identical to native phytochrome. |