Autor: |
Ling, Ma, Ximing, Zhou, James V, Little, Amy Y, Chen, Larry L, Myers, Baran D, Sumer, Baowei, Fei |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Proc SPIE Int Soc Opt Eng |
ISSN: |
0277-786X |
Popis: |
The purpose of this study is to investigate hyperspectral microscopic imaging and deep learning methods for automatic detection of head and neck squamous cell carcinoma (SCC) on histologic slides. Hyperspectral imaging (HSI) cubes were acquired from pathologic slides of 18 patients with SCC of the larynx, hypopharynx, and buccal mucosa. An Inception-based two-dimensional convolutional neural network (CNN) was trained and validated for the HSI data. The automatic deep learning method was tested with independent data of human patients. This study demonstrated the feasibility of using hyperspectral microscopic imaging and deep learning classification to aid pathologists in detecting SCC on histologic slides. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|