Autor: |
G A, Altenberg, C G, Vanoye, E S, Han, J W, Deitmer, L, Reuss |
Rok vydání: |
1994 |
Předmět: |
|
Zdroj: |
The Journal of biological chemistry. 269(10) |
ISSN: |
0021-9258 |
Popis: |
The P-glycoprotein (Pgp), a plasma membrane protein overexpressed in multidrug-resistant tumor cells, is thought to be both an ATPase that actively exports cytotoxic drugs and a Cl- channel activated by cell swelling. The partial reversal of multidrug resistance by Cl- transport blockers suggests a possible role for Cl- in Pgp-mediated drug transport. We used multidrug-resistant Chinese hamster fibroblasts and human breast cancer cells expressing Pgp to study the roles of Cl- (and also Na+ and HCO3-/CO2) on Pgp-mediated efflux of the fluorescent dye rhodamine 123 (R123). In Pgp-expressing Chinese hamster fibroblasts, exposed to isosmotic solutions, the unidirectional efflux of R123 was not measurably changed by a approximately 60-min removal of Cl- (or by exposure to Na(+)-free, or nominally HCO3-/CO2-free medium); short term (2-3 min) ion substitutions were also ineffective. In human breast cancer cells transfected with human mdr1 cDNA, hyposmotic solutions activated a Cl- current but had no effect on the Pgp-mediated unidirectional efflux of R123. Additionally, in human breast cancer cells, the intracellular presence of R123 did not prevent activation of the Cl- current by hyposmotic solution. The lack of detectable effect of removal of Cl-, Na+, or HCO3- on Pgp-mediated R123 transport rules out direct coupling between substrate transport and transport of either of these ions by Pgp. The persistence of Pgp-mediated R123 efflux in osmotically swollen cells indicates that activation of the Pgp-associated Cl- current does not hinder the Pgp pump function. The lack of effect of R123 on swelling-activated Cl- current denotes that Pgp-mediated transport of organic substrates and Pgp-associated Cl- currents can occur at the same time in a single cell. These results underscore the dissociation between Pgp-mediated active drug transport and electrodiffusive Cl- transport. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|