Popis: |
Quantify and characterize bacterial contamination of lead aprons in a high-volume catheterization laboratory and evaluate the efficacy of decontamination using an ultraviolet-C (UV-C) radiation system.Bacterial contamination and ineffective disinfection of personal protective equipment in medical centers pose potential health risks to patients and medical staff. The contamination burden of lead aprons and a reliable disinfection strategy are unknown.Ten routinely used, unsterilized lead aprons from a high-volume catheterization laboratory were studied. Standard and bacteria-resistant outer fabrics were included. Swabbings from four locations on each apron (inner thyroid collar, chest, waist, and bottom border) were obtained at baseline and after a 15-minute decontamination cycle using the UV-C based DCab System (Nosocom Solutions). Colony counts, speciation, and antibiotic resistance were obtained from aerobic and anaerobic cultures.Baseline cultures grew ≥1 colony from 25 of 40 samples (62.5%; 310 colonies; 0-100 colonies/sample; 16 organisms), mainly skin and mouth flora without antibiotic resistance. Baseline growth was greatest from the thyroid collar and similar between different fabrics. UV-C reduced subsequent growth (7.8 ± 23.8 colonies overall vs 0.1 ± 0.3 colonies overall; P.001), with all four isolates considered contaminants of laboratory handling. Colony counts were reduced in thyroid collar, chest, waist, nylon fabric, polyurethane fabric, and alternative bacteria-resistant fabric subgroups (all P.05).Routinely used lead aprons in a high-volume catheterization laboratory were contaminated by non-pathogenic skin and mouth flora located predominantly on the thyroid collar. Disinfection using an automated UV-C based system is highly effective across different apron surface locations and fabric types. |