Bcr-Abl kinase promotes cell cycle entry of primary myeloid CML cells in the absence of growth factors

Autor: T, Jonuleit, C, Peschel, R, Schwab, H, van der Kuip, E, Buchdunger, T, Fischer, C, Huber, W E, Aulitzky
Rok vydání: 1998
Předmět:
Zdroj: British journal of haematology. 100(2)
ISSN: 0007-1048
Popis: Cell cycle control of both immature and differentiated primary myeloid normal and chronic-phase chronic myeloid leukaemia (CML) cells to growth factor deprivation was studied. CD34+ cells were cultured in liquid culture. After removal of growth factors for 48 h normal cells were very efficiently arrested with the fraction of cells in S phase reduced by 70.8 +/- 6.5% in CD34+ and 50.5 +/- 4.2% in CD34- cells. In contrast, a significantly higher proportion of leukaemic cells remained in S phase. The fraction of S-phase cells was reduced by only 29.3 +/- 5.7% in CD34+ CML cells and 21.2 +/- 3.8% in CD34- cells. This abnormal negative cell cycle control in leukaemic cells was specific for growth factor deprivation. Reaction to IFN-alpha and TNF-alpha treatment was identical both in normal and CML cells. Equal quantities of the cytokines TNF-alpha, IL-1alpha, IL-1RA and IL-6 were produced by CML and normal cells. However, production of GM-CSF, with a median of 11 +/- 5 pg/ml, was found only in the supernatants of CML cells. But antibodies to GM-CSF did not restore growth factor dependence of the leukaemic cells. The defect was completely corrected by the abl-specific tyrosine kinase inhibitor CGP 57148 without effecting cell cycle control of normal cells. Our results demonstrate a directly Bcr-Abl-dependent defective response of both immature and differentiated primary myeloid CML cells to growth factor deprivation.
Databáze: OpenAIRE