Autor: |
C, Helvig, C, Alayrac, C, Mioskowski, D, Koop, D, Poullain, F, Durst, J P, Salaün |
Rok vydání: |
1997 |
Předmět: |
|
Zdroj: |
The Journal of biological chemistry. 272(1) |
ISSN: |
0021-9258 |
Popis: |
Incubation of Vicia sativa microsomes, containing cytochrome P450-dependent lauric acid omega-hydroxylase (omega-LAH), with [1-(14)C]11-dodecynoic acid (11-DDYA) generates a major metabolite characterized as 1,12-dodecandioic acid. In addition to time- and concentration-dependent inactivation of lauric acid and 11-DDYA oxidation, irreversible binding of 11-DDYA (200 pmol of 11-DDYA bound/mg of microsomal protein) at a saturating concentration of 11-DDYA was observed. SDS-polyacrylamide gel electrophoresis analysis showed that 30% of the label was associated with several protein bands of about 53 kDa. The presence of beta-mercaptoethanol in the incubate reduces 1,12-dodecandioic acid formation and leads to a polar metabolite resulting from the interaction of oxidized 11-DDYA with the nucleophile. Although the alkylation of proteins was reduced, the lauric acid omega-hydroxylase activity was not restored, suggesting an active site-directed inactivation mechanism. Similar results were obtained when reconstituted mixtures of cytochrome P450 from family CYP4A from rabbit liver were incubated with 11-DDYA. In contrast, both 11- and 10-DDYA resulted in covalent labeling of the cytochrome P450 2B4 protein and irreversible inhibition of activity. These results demonstrate that acetylenic analogues of substrate are efficient mechanism-based inhibitors and that a correlation between the position of the acetylenic bond in the inhibitor and the regiochemistry of cytochromes P450 oxygenation is essential for enzyme inactivation. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|