Quantification and phenotypic characterisation of peripheral IFN-γ producing leucocytes in chickens vaccinated against Newcastle disease
Autor: | S H, Andersen, L, Vervelde, K, Sutton, L R, Norup, E, Wattrang, H R, Juul-Madsen, T S, Dalgaard |
---|---|
Rok vydání: | 2017 |
Předmět: |
Vaccines
Staining and Labeling Newcastle Disease T-Lymphocytes Newcastle disease virus T cells Antibodies Monoclonal Enzyme-Linked Immunosorbent Assay Viral Vaccines CHO Cells Flow Cytometry Transfection Vaccines Attenuated Chicken Antibodies Article Interferon-gamma Cricetulus Animals Interferon-γ Chickens Intracellular cytokine staining |
Zdroj: | Veterinary Immunology and Immunopathology |
ISSN: | 1873-2534 |
Popis: | Highlights • An avian ICS assay for detection of chIFN-γ was established. • Commercially available chIFN-γ antibodies were evaluated using tranfected CHO cells. • Functional T cell responses were addressed in NDV vaccination study. • Circulating T cells producing IFN-γ were quantified and phenotyped by flow cytometry. The aim of this study was to optimise and evaluate an intracellular cytokine staining (ICS) assay for assessment of T cell IFN-γ responses in chickens vaccinated against Newcastle disease (ND). We aimed to validate currently available antibodies to chicken IFN-γ using transfected CHO cells. Moreover, this ICS assay was evaluated for use to detect mitogen and antigen induced IFN-γ production in chicken peripheral blood leucocytes. Chickens from an inbred white leghorn line containing two MHC haplotypes, B19 and B21, were divided into three experimental groups; one group was kept as naive controls, one group was vaccinated intramuscularly twice with a commercial inactivated ND virus (NDV) vaccine, and the last group was vaccinated orally twice with a commercial live attenuated NDV vaccine. PBMC were ex vivo stimulated with ConA or with NDV antigen. The ICS assay was used to determine the phenotype and frequency of IFN-γ positive cells. ConA stimulation induced extensive IFN-γ production in both CD3+TCRγδ+ (γδ T cells) cells and CD3+TCRγδ− cells (αβ T cells), but no significant differences were observed between the experimental groups. Furthermore, a large proportion of the IFN-γ producing cells were CD3− indicating that other cells than classic T cells, secreted this cytokine. NDV antigen stimulation induced IFN-γ production but to a lower extent than ConA and with a large variation between individuals. The CD3+TCR1γδ−CD8α+ (CTL) population produced the highest NDV specific IFN-γ responses, with significantly elevated levels of IFN-γ producing cells in the B19 chickens vaccinated orally with live attenuated NDV vaccine. This was not the case in the B21 animals, indicating a haplotype restricted variation. In contrast, the CD3+TCR1γδ−CD4+ (Th) population did not show a significant increase in IFN-γ production in NDV stimulated samples which was in part due to a high number of IFN-γ producing cells after incubation with medium alone. In conclusion, an ICS assay for phenotyping of IFN-γ producing chicken leukocytes was set up that proved useful in identifying cytokine producing cells upon either mitogen or antigen-specific stimulation. |
Databáze: | OpenAIRE |
Externí odkaz: |