Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy?

Autor: F, Guerard, J, Barbet, J F, Chatal, F, Kraeber-Bodere, M, Cherel, F, Haddad
Rok vydání: 2015
Předmět:
Zdroj: The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of.... 59(2)
ISSN: 1824-4785
Popis: Beta-emitting radionuclides are not able to kill isolated tumor cells disseminated in the body, even if a high density of radiolabeled molecules can be targeted at the surface of these cells because the vast majority of emitted electrons deliver their energy outside the targeted cells. Alpha-particle emitting radionuclides may overcome this limitation. It is thus of primary importance to test and validate the radionuclide of choice, the most appropriate carrier molecule and the most promising clinical indication. Four α-particle emitting radionuclides have been or are clinically tested in phase I studies namely 213Bi, 225Ac, 212Pb and 211At. Clinical safety has been documented and encouraging efficacy has been shown for some of them (213Bi and 211At). 211At has been the most studied and could be the most promising radionuclide but 225Ac and 212Pb are also of potential great interest. Any carrier molecule that has been labeled with β-emitting radionuclides could be labeled with alpha particle-emitting radionuclide using, for some of them, the same chelating agents. However, the physical half-life of the radionuclide should match the biological half-life of the radioconjugate or its catabolites. Finally everybody agrees, based on the quite short range of alpha particles, on the fact that the clinical indications for alpha-immunotherapy should be limited to the situation of disseminated minimal residual diseases made of small clusters of malignant cells or isolated tumor cells.
Databáze: OpenAIRE