Autor: |
S, Fagerström, S, Påhlman, C, Gestblom, E, Nånberg |
Rok vydání: |
1996 |
Předmět: |
|
Zdroj: |
Cell growthdifferentiation : the molecular biology journal of the American Association for Cancer Research. 7(6) |
ISSN: |
1044-9523 |
Popis: |
A combination of basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I) or 16 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum induces human SH-SY5Y neuroblastoma cells to undergo differentiation and acquire a neuronal phenotype. Nerve growth factor (NGF) added to SH-SY5Y cells stably transfected with the NGF-receptor TRK-A (SH-SY5Y/trk) induces a similar differentiated phenotype. SH-SY5Y cells express protein kinase C (PKC)-alpha, PKC-beta I, PKC-epsilon, and PKC-zeta protein, and phorbol ester- or growth factor-induced differentiation results in a sustained activation of PKC. The specific PKC inhibitor GF 109203X blocked TPA- and bFGF-IGF-I-induced neurite outgrowth in wild-type SH-SY5Y cells and NGF-induced neurite outgrowth in SH-SY5Y/trk cells. When added to differentiated cells, GF 109203X caused rapid retraction of growth cone filopodia. In TPA- and bFGF-IGF-I-treated cells, addition of GF 109203X also blocked induced expression of growth associated protein-43 and neuropeptide tyrosine while the increase in expression of these two genes was only slightly affected by the inhibitor in NGF-treated SH-SY5Y/trk cells. Thus, a portion of the NGF-induced phenotypic changes appears not to be mediated via PKC-dependent signaling. A high concentration of TPA (1.6 microM) down regulated PKC-alpha and PKC-beta I almost completely and PKC-epsilon partially in wild-type SH-SY5Y and SH-SY5Y/trk cells. Cells with down-regulated PKC-alpha and PKC-beta I after 1.6 microM TPA treatment still differentiated with growth factors. In these cells, the PKC-epsilon level was restored, and the PKC-epsilon protein was enriched in the growth cones. The 1.6 microM TPA-induced down-regulation of PKC-epsilon was counteracted by bFGF and NGF but not by platelet-derived growth factor or IGF-I. These data indicate that PKC activity is vital for neurite formation, and that the cells can differentiate under conditions when PKC-alpha and PKC-beta I are extensively down regulated. The close correlation between differentiation and presence of PKC-epsilon protein suggests an important function for this isoform during this process. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|