Reduced 1alpha-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition

Autor: J Y, Hsu, D, Feldman, J E, McNeal, D M, Peehl
Rok vydání: 2001
Předmět:
Zdroj: Cancer research. 61(7)
ISSN: 0008-5472
Popis: Evidence from epidemiological, molecular, and genetic studies suggests a role for vitamin D in the development and/or progression of prostate cancer. In experimental models and clinical trials, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] was shown to exert antiproliferative, prodifferentiating, and antimetastatic/invasive effects on prostatic epithelial cells. Because the direct clinical application of 1,25(OH)2D3 is limited by the major side effect of hypercalcemia, we investigated the potential therapeutic utility of its less calcemic precursor, 25-hydroxyvitamin D3 [25(OH)D3], which is converted locally within the prostate to 1,25(OH)2D3 by 1alpha-hydroxylase. Quantification of 1alpha-hydroxylase activity in human prostatic epithelial cells by enzyme-substrate reaction analyses revealed a significantly decreased activity in cells derived from adenocarcinomas compared with cells derived from normal tissues or benign prostatic hyperplasia (BPH). In growth assays, we found that 25(OH)D3 inhibited growth of normal or BPH cells similarly to 1,25(OH)2D3. In contrast, in primary cultures of cancer cells and established cell lines, the antiproliferative action of 25(OH)D3 was significantly less pronounced than that of 1,25(OH)2D3. Our results indicate that growth inhibition by 25(OH)D3 depends on endogenous 1alpha-hydroxylase activity, and that this activity is deficient in prostate cancer cells. This finding has ramifications for both the prevention and therapy of prostate cancer with vitamin D compounds.
Databáze: OpenAIRE