NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy

Autor: Alexandre, Dubrac, Steffen E, Künzel, Sandrine H, Künzel, Jinyu, Li, Rachana Radhamani, Chandran, Kathleen, Martin, Daniel M, Greif, Ralf H, Adams, Anne, Eichmann
Rok vydání: 2017
Předmět:
Zdroj: Nature Communications
ISSN: 2041-1723
Popis: Pericytes are mural cells that surround capillaries and control angiogenesis and capillary barrier function. During sprouting angiogenesis, endothelial cell-derived platelet-derived growth factor-B (PDGF-B) regulates pericyte proliferation and migration via the platelet-derived growth factor receptor-β (PDGFRβ). PDGF-B overexpression has been associated with proliferative retinopathy, but the underlying mechanisms remain poorly understood. Here we show that abnormal, α-SMA-expressing pericytes cover angiogenic sprouts and pathological neovascular tufts (NVTs) in a mouse model of oxygen-induced retinopathy. Genetic lineage tracing demonstrates that pericytes acquire α-SMA expression during NVT formation. Pericyte depletion through inducible endothelial-specific knockout of Pdgf-b decreases NVT formation and impairs revascularization. Inactivation of the NCK1 and NCK2 adaptor proteins inhibits pericyte migration by preventing PDGF-B-induced phosphorylation of PDGFRβ at Y1009 and PAK activation. Loss of Nck1 and Nck2 in mural cells prevents NVT formation and vascular leakage and promotes revascularization, suggesting PDGFRβ-Y1009/NCK signaling as a potential target for the treatment of retinopathies.
Pericytes are perivascular cells that regulate blood vessel formation and function. Here Dubrac et al. show that pericyte recruitment contributes to pathological neovascularisation in a mouse model of ischemic retinopathy, and that this depends on the regulation of PDGF-B signaling by NCK adaptor proteins.
Databáze: OpenAIRE