Popis: |
This paper presents a comparison between an analytical and a statistical iterative reconstruction algorithm for computed transmission tomography concerning their noise and resolution performance. The reconstruction of two-dimensional images from simulated fan-beam transmission data is performed with a filtered back-projection (FBP) type reconstruction and an iterative ordered subsets convex (OSC) maximum-likelihood method. A special software phantom, which allows measuring the resolution and noise in a nonambiguous way, is used to simulate transmission tomography scans with different signal-to-noise ratios (SNR). The noise and modulation transfer function is calculated for FBP and OSC reconstruction at several positions, distributed over the field-of-view (FOV). The reconstruction with OSC using different numbers of subsets shows an inverse linear relation to the number of iterations that are necessary to reach a certain resolution and SNR, i.e., increasing the number of subsets by a factor x reduces the number of required iterations by the same factor. The OSC algorithm is able to achieve a nearly homogeneous high resolution over the whole FOV, which is not achieved with FBP. The OSC method achieves a lower level of noise compared with FBP at the same resolution. The reconstruction with OSC can save a factor of up to nine of x-ray dose compared with FBP in the investigated range of noise levels. |