Popis: |
A characteristic property of amphipathic exchangeable apolipoproteins is an ability to exist alternately in lipid-free and lipid-bound states. In the present study, we have used 1H-15N-heteronuclear single quantum correlation spectroscopy to probe structural changes of apolipophorin III upon lipid association, by monitoring alterations of the chemical shifts of specific amino acids as a function of lipid titration. 15N-valine-, 15N-leucine-, 15N-lysine-, and 15N-glycine-labeled apolipophorin III were used in titration experiments with the micelle-forming lipid dodecylphosphocholine. In the absence of lipid, valine and leucine residues are located in the hydrophobic interior of the apolipophorin III helix bundle and their resonances resist chemical shift changes below the critical micelle concentration of dodecylphosphocholine. At the critical micelle concentration, however, dramatic and abrupt chemical shift changes occur, apparently coincident with formation of a protein-lipid micelle complex, as judged by significant line-width broadening of the crosspeaks. By contrast, apolipophorin III lysine and glycine residues are located on the hydrophilic surfaces of amphipathic alpha-helices or in loop regions, exposed to solvent. Their crosspeaks display either a chemical shift change similar to that seen for hydrophobic residues or a more gradual chemical shift change, beginning at very low dodecylphosphocholine concentrations. These results indicate that an interaction occurs between specific solvent-exposed lysine residues and dodecylphosphocholine below the critical micelle concentration of this lipid, whereas valine and leucine residues are not accessible to monomeric dodecylphosphocholine. At the critical micelle concentration, however, the availability of a newly formed lipid surface induces apolipophorin III binding, concomitant with conformational opening of the helix bundle, exposing its hydrophobic surfaces for binding to the dodecylphosphocholine micellar surface. Subsequently, hydrophobic residues undergo characteristic spectral changes. Subtle differences in behavior of specific hydrophobic residues, in terms of their response to dodecylphosphocholine titration and relative locations in the helix-bundle conformation, suggest that one end of the molecule may initiate contact with the lipid surface, followed by helix bundle opening. |