Identification of functional domains of rat intestinal phospholipase B/lipase. Its cDNA cloning, expression, and tissue distribution

Autor: H, Takemori, F N, Zolotaryov, L, Ting, T, Urbain, T, Komatsubara, O, Hatano, M, Okamoto, H, Tojo
Rok vydání: 1998
Předmět:
Zdroj: The Journal of biological chemistry. 273(4)
ISSN: 0021-9258
Popis: A cDNA encoding a rat intestinal Ca(2+)-independent phospholipase B/lipase (PLB/LIP) was cloned from an ileac mucosa cDNA library using a probe amplified by polymerase chain reaction based on the purified enzyme's sequence. PLB/LIP consists of an NH2-terminal signal peptide, four tandem repeats of about 350 amino acids each, and a hydrophobic domain near the COOH terminus. The enzyme purified previously was found to be derived from the second repeat part. To examine the function of each domain, the full-length PLB/LIP, individual repeats, and a protein lacking the COOH-terminal hydrophobic stretch were expressed in COS-7 cells. The results showed that the second repeat, but not the other repeats, had all the activities (phospholipase A2, lysophospholipase, and lipase) found in the purified natural and expressed full-length enzymes, suggesting repeat 2 is a catalytic domain. The full-length enzyme was mainly present in membrane fractions and efficiently solubilized by treatment with 1% Triton X-100, but not with phosphatidylinositol-specific phospholipase C. Deletion of the COOH-terminal hydrophobic stretch caused the secretion of90% of synthesized PLB/LIP into culture media. These results suggest the hydrophobic domain is not replaced by a glycosylphosphatidylinositol anchor but serves as a membrane anchor directly. A message of the full-length PLB/LIP was abundantly expressed in the ileum and also, in a smaller, but significant amount, in the esophagus and testis. Immunohistochemistry showed that PLB/LIP is localized in brush border membranes of the absorptive cells, Paneth cells, and acrosomes of spermatid, suggesting its roles related and unrelated to intestinal digestion.
Databáze: OpenAIRE