Popis: |
Microvascular proliferation, a prominent feature of tumors of the central nervous system, is a prime target for anti-cancer therapy.Because basic fibroblast growth factor (bFGF) plays a key role in the regulation of angiogenesis, surgical specimens from 52 human brain tumors were examined by immunocytochemical studies with a murine monoclonal antibody to bFGF. Sections from these tumors also were incubated with Ki-67 monoclonal antibody to measure the growth fraction.Immunostaining for bFGF was observed in 45 of 52 (87%) neoplasms, reacting with 97% of the malignant brain tumors and 67% of benign tumors (P0.01). The nonreactive tumors were a medulloblastoma and 7 of 21 (33%) benign, noninvasive, slow-growing neoplasms (1 acoustic schwannoma, 3 meningiomas, 2 pituitary adenomas, and 1 cholesteatoma). The indices of proliferation (Ki-67 labeling) were lower for the 21 benign tumors (1.2 +/- 1.1%) than the 31 malignant tumors (10.3 +/- 10.5%; P0.001). The bFGF was immunolocalized in the tumor cell nuclei in 23 of 52 tumors (44%) and in the cytoplasm of 8 of 52 (15%) tumors. Immunostaining to bFGF was prominent in the microvascular endothelial compartment in 84% of the malignant tumors and only 52% of benign tumors (P0.01). Immunostaining was not present after preabsorption of the antibody with pure human recombinant bFGF.The presence of bFGF predominantly within the tumor microvasculature indicates a cellular depot for this potent growth factor that mediates angiogenesis and tumorigenesis. These data support a role for bFGF in the transition from the benign to the malignant phenotype. |