Separation of cannabinoid receptor affinity and efficacy in delta-8-tetrahydrocannabinol side-chain analogues

Autor: Griffin, Graeme, Williams, Stephanie, Aung, Mie Mie, Razdan, Raj K, Martin, Billy R, Abood, Mary E
Jazyk: angličtina
Rok vydání: 2001
Předmět:
Popis: 1. The activities of a number of side-chain analogues of delta-8-tetrahydrocannabinol (Delta(8)-THC) in rat cerebellar membrane preparations were tested. 2. The affinities of each compound for the CB(1) receptor were compared by their respective abilities to displace [(3)H]-SR141716A and their efficacies compared by stimulation of [(35)S]-GTPgammaS binding. 3. It was found that the affinities varied from 0.19+/-0.03 nM for 3-norpentyl-3-[6'-cyano,1',1'-dimethyl]hexyl-Delta(8)-THC to 395+/-66.3 nM for 5'-[N-(4-chlorophenyl)]-1',1'-dimethyl-carboxamido-Delta(8)-THC. 4. The efficacies of these compounds varied greatly, ranging from the very low efficacy exhibited to acetylenic compounds such as 1'-heptyn-Delta(8)-THC and 4'-octyn-Delta(8)-THC to higher efficacy compounds such as 5'-(4-cyanophenoxy)-1',1'-dimethyl-Delta(8)-THC and 5'-[N-(4-aminosulphonylphenyl)]-1',1' dimethyl-carboxamido Delta(8)-THC. All agonist activities were antagonized by the CB(1)-selective antagonist SR141716A. 5. It was found that a ligand's CB(1) affinity and efficacy are differentially altered by modifications in the side-chain. Decreasing the flexibility of the side-chain reduced efficacy but largely did not alter affinity. Additionally, the positioning of electrostatic moieties, such as cyano groups, within the side-chain also has contrasting effects on these two properties. 6. In summary, this report details the characterization of a number of novel Delta(8)-THC analogues in rat cerebellar membranes. It provides the first detailed pharmacological analysis of how the inclusion of electrostatic moieties in the side-chain and also how alteration of the side-chain's flexibility may differentially affect a CB(1) cannabinoid receptor ligand's affinity and efficacy.
Databáze: OpenAIRE