Autor: |
Pálma, Porrogi, László, Kóbori, Krisztina, Kõhalmy, Judit, Gulyás, László, Vereczkey, Katalin, Monostory |
Rok vydání: |
2008 |
Předmět: |
|
Zdroj: |
Pharmacological reports : PR. 60(6) |
ISSN: |
1734-1140 |
Popis: |
Fluorometric substrates selective for various cytochrome P450 isoforms (P450s) have great advantages in in vitro enzyme inhibition and induction studies because they are highly sensitive and suitable for rapid screening. 7-Methoxy-4-trifluoromethylcoumarin (MFC) has been reported as a CYP2C9-selective substrate. The present study investigated the relative catalytic selectivity of several human P450s in the O-demethylation of MFC and the applicability of MFC as a probe substrate for CYP2C9. The CYP2C9-selectivity in liver microsomes was not supported by the correlation analysis within a series of microsomes from individual donors or by studies using chemical inhibitors. MFC O-demethylation of microsomes did not correlate with tolbutamide 4-hydroxylation, the classical CYP2C9-marker activity, suggesting the possible participation of some of the other P450s. Results of inhibition studies using model P450 inhibitors also brought the CYP2C9-selectivity of MFC O-demethylation into question. In microsomes containing cDNA-expressed individual P450s, CYP2B6 and CYP2E1 seemed to be the most active in the O-demethylation of MFC. Our results support the participation of several P450 enzymes (CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4) in MFC O-dealkylation. Therefore, MFC cannot be considered a suitable probe substrate in models that express several P450s, such as liver microsomes or primary hepatocytes. Moreover, MFC is a more potent fluorogenic substrate for CYP2B6 and CYP2E1 than for CYP2C9 in microsomes containing cDNA-expressed P450s. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|