Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins

Autor: E B, Kearney, J, Goldenberg, J, Lipsick, M, Perl
Rok vydání: 1979
Předmět:
Zdroj: The Journal of biological chemistry. 254(19)
ISSN: 0021-9258
Popis: A flavokinase preparation from Bacillus subtilis is described which catalyzes the phosphorylation of reduced, but not oxidized, riboflavin. The enzyme is distinguished from other known flavokinases also in having an unusually low Km for the flavin substrate, 50 to 100 nM. ATP is the obligatory phosphate donor; one ATP is utilized for each FMNH2 formed. Mg2+ or Zn2+ is required for the reaction; Co2+ and Mn2+ will substitute, but less effectively. The same enzyme preparation catalyzes the synthesis of FADH2 from FMNH2 and ATP, but not the synthesis of FAD from FMN and ATP. FADH2 is also formed from reduced riboflavin, presumably by sequential flavokinase and FAD synthetase action. Zn2+ cannot replace Mg2+ in FADH2 formation. The reverse reaction, formation of FMN from FAD, occurs only with reduced FAD, giving rise to FMNH2, and is dependent on the presence of inorganic pyrophosphate. The enzyme thus appears to be an FADH2 pyrophosphorylase. The two enzymatic activities, flavokinase and FADH2 pyrophosphorylase, although not separated during the purification procedure, are distinguished by differences in metal ion specificity, in concentration dependence for ATP (apparent Km for ATP = 300 microM for FADH2 synthesis and 6.5 microM for flavokinase), and in the inhibitory effects of riboflavin analogues.
Databáze: OpenAIRE