Note on quantitative homogenization results for parabolic systems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}Rd

Autor: Meshkova, Yulia
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Evolution Equations
ISSN: 1424-3202
1424-3199
Popis: In \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2({\mathbb {R}}^d;{\mathbb {C}}^n)$$\end{document}L2(Rd;Cn), we consider a semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-tA_\varepsilon }$$\end{document}e-tAε, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\geqslant 0$$\end{document}t⩾0, generated by a matrix elliptic second-order differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\varepsilon \geqslant 0$$\end{document}Aε⩾0. Coefficients of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\varepsilon $$\end{document}Aε are periodic, depend on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {x}}/\varepsilon $$\end{document}x/ε, and oscillate rapidly as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}ε→0. Approximations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-tA_\varepsilon }$$\end{document}e-tAε were obtained by Suslina (Funktsional Analiz i ego Prilozhen 38(4):86–90, 2004) and Suslina (Math Model Nat Phenom 5(4):390–447, 2010) via the spectral method and by Zhikov and Pastukhova (Russ J Math Phys 13(2):224–237, 2006) via the shift method. In the present note, we give another short proof based on the contour integral representation for the semigroup and approximations for the resolvent with two-parametric error estimates obtained by Suslina (2015).
Databáze: OpenAIRE