Radiomics model-based algorithm for preoperative prediction of pancreatic ductal adenocarcinoma grade

Autor: Valeriya S, Tikhonova, Grigory G, Karmazanovsky, Evvgeny V, Kondratyev, Ivan S, Gruzdev, Kseniya A, Mikhaylyuk, Mikhail Y, Sinelnikov, Amiran Sh, Revishvili
Rok vydání: 2021
Zdroj: European radiology.
ISSN: 1432-1084
Popis: To develop diagnostic radiomic model-based algorithm for pancreatic ductal adenocarcinoma (PDAC) grade prediction.Ninety-one patients with histologically confirmed PDAC and preoperative CT were divided into subgroups based on tumor grade. Two histology-blinded radiologists independently segmented lesions for quantitative texture analysis in all contrast enhancement phases. The ratio of densities of PDAC and unchanged pancreatic tissue, and relative tumor enhancement (RTE) in arterial, portal venous, and delayed phases of the examination were calculated. Principal component analysis was used for multivariate predictor analysis. The selection of predictors in the binary logistic model was carried out in 2 stages: (1) using one-factor logistic models (selection criterion was p0.1); (2) using regularization (LASSO regression after standardization of variables). Predictors were included in proportional odds models without interactions.There were significant differences in 4, 16, and 8 texture features out of 62 for the arterial, portal venous, and delayed phases of the study, respectively (p0.1). After selection, the final diagnostic model included such radiomics features as DISCRETIZED HU standard, DISCRETIZED HUQ3, GLCM Correlation, GLZLM LZLGE for the portal venous phase of the contrast enhancement, and CONVENTIONAL_HUQ3 for the delayed phase of CT study. On its basis, a diagnostic model was built, showing AUC for grade ≥ 2 of 0.75 and AUC for grade 3 of 0.66.Radiomics features vary in PDAC of different grades and increase the accuracy of CT in preoperative diagnosis. We have developed a diagnostic model, including texture features, which can be used to predict the grade of PDAC.• A diagnostic algorithm based on CT texture features for preoperative PDAC grade prediction was developed. • The assumption that the scanning protocol can influence the results of texture analysis was confirmed and assessed. • Our results show that tumor differentiation grade can be assessed with sufficient diagnostic accuracy using CT texture analysis presented in this study.
Databáze: OpenAIRE