Popis: |
The effect of oxygen, expressed as the oxygen enhancement ratio (OER), on the number of single-strand breaks (SSB) and double-strand breaks (DSB) induced in DNA by the radioactive decay of tritium was measured in human T1 cells whose DNA had been labeled with tritium at carbon atom number 6 of thymidine. Decays were accumulated in vivo under aerobic conditions at 0-1 degrees C and at -196 degrees C and in a nitrogen atmosphere at 0-1 degrees C. The number of SSB and DSB produced was analyzed by sucrose gradient centrifugation. For each tritium decay there were 0.25 DSB in cells exposed to air at 0-1 degrees C and 0.07 in cells kept under nitrogen, indicating an OER of 3.6, a value expected for such low-LET radiation. However, for each tritium decay there were 1.25 SSB in cells exposed to air at 0-1 degrees C and 0.76 in cells kept under nitrogen indicating an OER of only 1.7. The corresponding values for 60Co gamma radiation, expressed as SSB per 100 eV absorbed energy, were 4.5 and 1.0, giving an OER of 4.5. The low OER value found for SSB induced by tritium decay can be explained if 31% of the total SSB produced in air result from transmutation by a mechanism which does not produce DSB and is unaffected by oxygen. |