Relationship Exploration of Chemical Content, Complex Dielectric Constant and Spectral Features of Rocks

Autor: Chang-bao, Yang, Meng-hong, Wu, Chen-xi, Zhang, Yan, Yu, Meng-long, Xu, Wan-song, Liu, Sheng-bo, Chen
Rok vydání: 2018
Zdroj: Guang pu xue yu guang pu fen xi = Guang pu. 36(10)
ISSN: 1000-0593
Popis: In this research, 97 pieces of rock in Xingcheng, Liaoning Province, China were collected to measure the spectral reflectance in 350~2 500 nm, chemical content, and complex dielectric constant of some samples. The absorption depths were calculated by using continuum- removal method. With correlation analysis method, two kinds of correlation curves were obtained based on the theory of spectral characteristics of chemical contents and the principle of dielectric constant. One described the relationship between chemical content and spectral absorption depth, and the other one represented the correlation of complex dielectric constant and reflectance. By summarizing curves morphological characteristics, several conclusions were drawn as follows: (1)There was a strong correlation between the chemical content (SiO2, Al2O3, CaO, K2O, MgO, burnt-loss) and spectral absorption depth in 1 900~2 500 nm, furthermore, at around 1 900, 2 200, 2 300 nm and other identifying characteristic bands, local extreme maximum / minimum values appeared. At Fe3+ characteristic band (400~550 nm), correlation coefficient reached -0.406 between Fe2O3 content and absorption in igneous rock samples collection. Exploring the relationship between rock spectral absorption features and its chemical contents had a positive effect on metallogenic prediction and lithology identification with remote sensing image. (2) Reflectance and complex dielectric constant were negatively correlated totally, compared with the imaginary part; the real part had a better relation reached -0.753 at around 1 900 nm. Curves showed that there were great correlations around 1 900 and 2 200 nm, so, our study adopted different models to simulate response relationships. Dielectric constant of media is one of the basic physical properties, and now most analyses of existing research between electromagnetic characteristics and dielectric constant are studied in microwave band, however, our research is conducted in visible and near infrared range. The conclusions will be useful for further exploration on dielectric characteristics and spectral features of rocks.
Databáze: OpenAIRE