Autor: |
S, Roy, M R, Fox, J, Curcic, W, Schwizer, A, Pal |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 24(7) |
ISSN: |
1365-2982 |
Popis: |
The function and structure of the gastro-esophageal junction (GEJ) determine its efficacy as a reflux barrier. This study presents a novel methodology for the quantitative assessment of GEJ and proximal gastric morphology from magnetic resonance (MR) imaging. Based on this data we propose a new conceptualization of the hypothesis that a flap valve mechanism contributes to reflux protection.3D models of the GEJ and proximal stomach were reconstructed from MR images in 12 healthy volunteers during respiration and on eating a test meal to maximum satiation. A rotating plane analysis measured the gastro-esophageal insertion angle and span of contact. An ellipsoid fit provided quantitative assessment of gastric shape and orientation relative to a fixed anatomical reference point. Position of the esophageal insertion on the 'gastric ellipse' was noted. An ellipsoid-cylinder model was designed to analyze the relationships among parameters describing the GEJ morphology.The insertion angle became more acute on expiration, but did not change with meal ingestion. In contrast the span of contact did not vary with respiration, but increased with gastric filling. Changes in gastric morphology with distension further augmented the span of gastro-esophageal contact in almost 70% of the studies.Novel MR imaging and biophysical analysis of the GEJ and proximal stomach provide a quantitative description of structures contributing to the reflux barrier. Changes in these parameters during respiration and on eating support the hypothesis that structural components of a functional 'flap valve' like mechanism contribute to reflux protection. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|