Popis: |
Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identified with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it.The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for (125)I and (241)Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers.Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the small gap region. The unwanted additional current was shown to be proportional to the size of the aperture for the UW VAFAC. The extra ionization produced in the small gap region was eliminated for both chambers by covering the insulating side of the collecting electrode with a grounded conducting layer.The small gap region downstream of the collecting electrode in the NRC WAFAC and UW VAFAC can serve as an unwanted source of ion current. It is concluded that a residual electric field in the small gap region may lead to ion transport and to charge being trapped on the surface of the foil. The foil then acts as a capacitor with an equal charge, but of opposite sign, being attracted to the conducting surface. Covering the back of the collecting electrode surface with a grounded conducting layer eliminated the polarity effect. |