A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin receptor 1146-kinase domain inhibits tyrosine dephosphorylation of the insulin receptor in situ

Autor: A S, Liotta, H K, Kole, H M, Fales, J, Roth, M, Bernier
Rok vydání: 1994
Předmět:
Zdroj: The Journal of biological chemistry. 269(37)
ISSN: 0021-9258
Popis: A synthetic tris-sulfotyrosyl dodecapeptide (TRDIY(S)ETDY(S)Y(S)RK-amide), whose primary sequence is identical to the 1142-1153 sequence of the insulin proreceptor, inhibited insulin receptor dephosphorylation in solubilized membranes, and digitonin-permeabilized cells derived from Chinese hamster ovary (CHO) cells expressing high levels of human insulin receptors (CHO/HIRc). It also inhibited the dephosphorylation of a synthetic tyrosine phosphorylated substrate by recombinant PTP-1B, a protein tyrosine phosphatase (PTPase), indicating that it acted via interaction with PTPase(s). A N-stearyl derivative of the peptide caused an approximately 4.5-fold increase in insulin-stimulated receptor autophosphorylaction in intact CHO/HIRc cells. The peptide displayed specificity toward tyrosine-class phosphatases only, as it had no effect on the activities of the serine/threonine phosphatases PP-1 and PP-2A, or alkaline phosphatase. The tyrosine sulfate ester bonds of the peptide were stable when incubated with PTP-1B (1 h, 30 degrees C). These data suggest that the sulfotyrosyl peptide functions as a nonhydrolyzable phosphotyrosyl peptide analogue capable of direct interaction with PTPase catalytic domain.
Databáze: OpenAIRE