Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction

Autor: Lan Li, Wong, Gayathri, Natarajan, Marissa, Boleij, Sara Swi, Thi, Fernaldo Richtia, Winnerdy, Sudarsan, Mugunthan, Yang, Lu, Jong-Min, Lee, Yuemei, Lin, Mark, van Loosdrecht, Yingyu, Law, Staffan, Kjelleberg, Thomas, Seviour
Rok vydání: 2019
Předmět:
Zdroj: Applied microbiology and biotechnology. 104(8)
ISSN: 1432-0614
Popis: Anaerobic ammonium oxidation (anammox)-performing bacteria self-assemble into compact biofilms by expressing extracellular polymeric substances (EPS). Anammox EPS are poorly characterized, largely due to their low solubility in typical aqueous solvents. Pronase digestion achieved 19.5 ± 0.9 and 41.4 ± 1.4% (w/w) more solubilization of laboratory enriched Candidatus Brocadia sinica anammox granules than DNase and amylase, respectively. Nuclear magnetic resonance profiling of the granules confirmed proteins as dominant biopolymer within the EPS. Ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate and N,N-dimethylacetamide (EMIM-Ac/DMAc) mixture was applied to extract the major structural proteins. Further treatment by anion exchange chromatography isolated homologous serine (S)- and threonine (T)-rich proteins BROSI_A1236 and UZ01_01563, which were major components of the extracted proteins, and sequentially highly similar to putative anammox extracellular proteins KUSTD1514 and WP_070066018.1 of Ca. Kuenenia stuttgartiensis and Ca. Brocadia sapporoensis, respectively. Six monosaccharides (i.e., arabinose, xylose, rhamnose, fucose, galactose, and mannose) were enriched for BROSI_A1236 against all other major proteins. The sugars, however, contributed 0.5% (w/w) of total granular biomass and were likely co-enriched as glycoprotein appendages. This study demonstrates that BROSI_A1236 is a major extracellular component of Ca. B. sinica anammox biofilms that is likely a common anammox extracellular polymer, and can be isolated from the matrix following ionic liquid extraction.
Databáze: OpenAIRE